Ordered structures of defect clusters in gadolinium-doped ceria.

نویسندگان

  • Zhi-Peng Li
  • Toshiyuki Mori
  • Fei Ye
  • Dingrong Ou
  • Jin Zou
  • John Drennan
چکیده

The nano-domain, with short-range ordered structure, has been widely observed in rare-earth-doped ceria. Atomistic simulation has been employed to investigate the ordering structure of the nano-domain, as a result of aggregation and segregation of dopant cations and the associated oxygen vacancies in gadolinium-doped ceria. It is found that the binding energy of defect cluster increases as a function of cluster size, which provides the intrinsic driving force for the defect cluster growth. However, the ordered structures of the defect clusters are different from the chain model as previously reported. Adjacent oxygen vacancies prefer to locate along <110>/2 lattice vector, which results in a unique stable structure (isosceles triangle) formation. Such isosceles triangle structure can act as the smallest unit of cluster growth to form a symmetric dumbbell structure. This unique dumbbell structure is hence considered as a building block for the development of larger defect clusters, leading to nano-domain formation in rare-earth-doped ceria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of ionic conductivity of gadolinium doped ceria electrolyte with nano CuO sintering aid

Gadanium doped cerium oxide ceramic (GDC) is widely used as solid electrolytes in solid oxide fuel cells because of its high oxygen ion conductivity. In this study, the effect of addition of nano CuO as a sintering aid on the properties of GDC electrolyte were investigated. For this purpose, 0.2, 0.5, and 1% mole of nano Cuo was added to GDC ceramics, which was synthesized by the solid-state me...

متن کامل

Special quasirandom structures for gadolinia-doped ceria and related materials.

Gadolinia doped ceria in its doped or strained form is considered to be an electrolyte for solid oxide fuel cell applications. The simulation of the defect processes in these materials is complicated by the random distribution of the constituent atoms. We propose the use of the special quasirandom structure (SQS) approach as a computationally efficient way to describe the random nature of the l...

متن کامل

Effect of Dopant on Improving Structural, Density and Functional Properties of Ceria Based SOFC Electrolyte

   In the present work, Gadolinium Doped ceria (GDC) based solid electrolyte was successfully synthesized through wet chemical method to operate at intermediate temperature (500–700°C) for SOFCs. DSC study revealed the formation of GDC phase at 900°C during calcination. The crystal structure of GDC was identified as cubic fluorite phase and the crystallite size was found to be around 23 nm....

متن کامل

Optimizing ionic conductivity in doped ceria

David Andersson et al. report calculations revealing how doped oxides with cubic fluorite structures become effective ionic conductors. Cubic fluorite structures, such as ceria (CeO2), can become effective ionic conductors when doped with cations of lesser valence than the host cations. Doped ceria thus has potential as an electrolyte for environmentally friendly solid oxide fuel cells. Anderss...

متن کامل

Preparation of aliened porous Ni-GDC nano composite by freeze-casting process

This current study reports preparation of Nickel-Gadolinium doped Ceria (Ni-GDC) composite via controlled unidirectional freeze casting of aqueous-based GDC slurry completed with nickel infiltrated into the porous GDC samples. Gadolinium doped ceria powder prepared by gel-combustion synthesis method. The oxide powder was confirmed to be the fluorite-structured of Ce0.8Gd0.2O1.9 solid solution b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 134 22  شماره 

صفحات  -

تاریخ انتشار 2011